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We have studied domain growth in nematic liquid crystals using a lattice Boltzmann
algorithm to solve the full, three-dimensional equations of hydrodynamics. An initially
cylindrical V (bend) domain in an H (splay) state grows or shrinks anisotropically in
agreement with experiment. A + 1

2
disclination loop forms at the mid-point of the wall

surrounding the domain. We argue that different director configurations at different points
on the loop lead to velocity anisotropy and show that both elastic effects and backflow are
relevant. We discuss the dependence of the domain wall velocity on surface tilt and on the
magnitude of an applied electric field.

1. Introduction

The dynamics of defects in liquid crystals can have a

marked effect on their physical properties [1]. In parti-

cular, switching between topologically distinct configura-

tions in a liquid crystal device can involve the nucleation

and growth of a domain of the switched state. For

example, Acosta et al. [2] have reported results showing

how the speed at which a cylindrical V (bend) domain

grows at the expense of an H (splay) domain in a pi-cell

device depends on the surface tilt angle, applied field

and cell thickness. They find, as expected, that many

features of their results can be explained by assuming

a rate of growth proportional to the free energy

difference between the growing and shrinking phases.

However a particularly interesting, unexplained

feature of the experiments is an anisotropy in the

speed of the domain wall bounding the growing state.

This leads to domains losing their circular symmetry as

they grow. Acosta et al. [2] speculated that this was due

to backflow effects.
The aim of this paper is to model the growth of a V

domain into an H matrix to explain the reasons behind

the anisotropic growth. We find that there are two

contributions to the anisotropy. The first of these is a

relaxational effect that depends on the elastic coeffi-

cients. The second is hydrodynamic in origin and

results from the back flow induced as the wall moves.

Both effects occur because, moving around the domain,

the wall changes its nature: from splay–bend with a z 1
2

defect at its mid-point; to twist; to splay–bend with

a { 1
2
defect at its mid-point; and back to twist. The

different director configurations lead to differences in

both the relaxational dynamics and the flow.
The results were obtained by using a lattice

Boltzmann approach to solve the Beris–Edwards equa-

tions of liquid crystal hydrodynamics. These rather

general equations are needed to describe liquid crystal

hydrodynamics in regions where there is a variation

in the magnitude of the order parameter; they are

presented in § 2. The geometry of the simulation is

described in § 3. To describe fully the disclination loop

we work in three dimensions, extending the two-

dimensional results described in [3]. Results are

presented in § 4 where we discuss the effects of surface

tilt, elastic constants, back flow and an applied voltage

on the domain growth.

2. Theory

To describe the movement of topological defects,

in particular backflow effects, it is important to use

a formulation of liquid crystal hydrodynamics that is

written in terms of the tensor order parameter Q. This

allows the magnitude of the order parameter to vary [4, 5]

and correctly describes the dynamics of the defect cores.

The tensor order parameter is related to the direction
*Author for correspondence; e-mail: j.yeomans1@physics.
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of individual molecules m̂m by

Qab~vm̂mam̂mb{
1

3
dab > ð1Þ

where the angular brackets denote a coarse-grained

average. (Greek indices will be used to represent

Cartesian components of vectors and tensors and

the usual summation over repeated indices will be

assumed.) Q is a traceless symmetric tensor. Its largest

eigenvalue, 2
3
q, 0vqv1, describes the magnitude of the

order. The corresponding eigenvector n describes the

director field. (The more widely used Ericksen–Leslie–

Parodi formulation [6, 7] of the equations of motion for

liquid crystals, written in terms of the director field n,

assumes that eigenvalues ofQ are of constant magnitude.)
The equilibrium properties of the liquid crystal are

modelled by a Landau–de Gennes free energy [8, 9]

F~

ð
V

dV fbulkzfelasticzfelectricð Þ: ð2Þ

fbulk describes the bulk free energy density [10]

fbulk~
A0

2
1{

c

3

� �
Q2

ab{
A0c

3
QabQbcQcaz

A0c

4
Q2

ab

� �2

, ð3Þ

felastic is the elastic free energy density

felastic~
L1

2
La Qbc

� �2
z

L2

2
La Qac

� �
Lb Qbc

� �

z
L3

2
Qab La Qce

� �
Lb Qce

� �
,

ð4Þ

and the electric contribution is

felectric~{
em
8p

E2{
ea
12p

EaEbQab ð5Þ

where

ea~
3

2q
eE{e\
� �

, ea~
2

3
e\z

1

3
eE ð6Þ

and e|| and e\ are the components of the dielectric

constants parallel and perpendicular to the director

field, respectively.

The Beris–Edwards equation of motion for the

nematic order parameter is [11]

Ltzu:+ð Þ Q{S W, Qð Þ~CH ð7Þ
where C is a collective rotational diffusion constant.

The first term on the left-hand side of equation (7) is the

material derivative describing the usual time depen-

dence of a quantity advected by a fluid with velocity u.

This is generalized by a second term

S W, Qð Þ~ j WszWað Þ Qz
1

3
I

� �
z Qz

1

3
I

� �

j Ws{Wað Þ{2j Qz
1

3
I

� �
Tr QWð Þ

ð8Þ

where Ws~(WzWT)/2 and Wa~(W2WT)/2 are the

symmetric part and the anti-symmetric part, respec-

tively, of the velocity gradient tensorWab~hbua. S(W,Q)

appears in the equation of motion because the order

parameter distribution can be both rotated and stretched

by flow gradients. This is a consequence of the rod-like

geometry of the liquid crystal molecules. j is a constant

which depends on the molecular details of a given liquid

crystal. The term on the right-hand side of equation (7)

describes the relaxation of the order parameter towards

the minimum of the free energy. The molecular field

H which provides the driving force is related to the

variational derivative of the free energy by

H~{
dF

dQ
z

I

3
Tr

dF

dQ
: ð9Þ

The fluid momentum obeys the continuity

LtrzLarua~0 ð10Þ
and the Navier–Stokes equation

r LtzubLb
� �

ua~LbtabzLbsabzgLb 1{3srP0

� ��
LcucsabzLaubzLbua

� ð11Þ

where r is the fluid density and g is an isotropic

viscosity (due to the structure of the stress tensor

described below there are still five non-zero Leslie

coefficients, although they are not all independent [11]).

The form of this equation is not dissimilar to that for

a simple fluid. However the details of the stress tensor

reflect the additional complications of liquid crystal

hydrodynamics. There is a symmetric contribution

sab~{P0dab{jHac Qcbz
1

3
dcb

� �
{j Qacz

1

3
dac

� �
Hcb

z2j Qabz
1

3
dab

� �
QceHce{LbQcn

dF

dLaQcn

ð12Þ

and an antisymmetric contribution

tab~QacHcb{HacQcb: ð13Þ
The differential equations for the order parameter

field and the flow field are coupled. The velocity field

and its derivatives appear in the equation of motion for

the order parameter, equation (7). Unless the flow field

u~0 the dynamics given by equation (7) are not purely

relaxational, and hydrodynamics can play an important

role. Conversely, the order parameter field affects the

dynamics of the flow field through the stress tensors,

equations (12) and (13), which appear in the Navier–

Stokes equation (11) and depend on Q and H. This

back-action of the order parameter field on the flow

field is usually referred to as back flow.

To summarize, the dynamics of the liquid crystal

is described by the solution of equations (7), (10) and

(11). We solve these equations numerically using a
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lattice Boltzmann algorithm; details of the algorithm

are given in [12].

3. Simulation details

We consider a nematic liquid crystal confined

between parallel plates at z~0, z~Lz as shown in

figure 1. The directors at the plates are constrained to

lie in the (y, z) plane at fixed angles zht, 2ht to the

plate at z~0, z~Lz respectively. Initially we choose

the director field to be aligned vertically within a cylin-

drical domain lying at the centre of the sample and

horizontally, along y, outside. Within a few simulation

steps a + 1
2
disclination loop (shown as a thick line in

figure 1) is created at the interface because the two

domains are topologically distinct. Symmetry con-

strains the defect ring to lie at z~Lz/2. The defect

ring then grows or shrinks (depending on the simula-

tion conditions, e.g. the tilt angle of the surface or the

electric field) to reach an equilibrium state which

minimizes the free energy.

Figure 1 also shows cross-sections of the director

field. Because the surface is rubbed in the y direction

(i.e. the surface directors lie along the y axis) a cross-

section perpendicular to the x axis contains splay–bend

domain walls. These are labelled SB1 and SB2 in

figure 1. The defect at the mid-point of the wall has

topological charge z 1
2
and { 1

2
at SB1 and SB2

respectively. The cross-section perpendicular to the y

axis, on the other hand, includes twist walls labelled T1

and T2. The nature of the walls varies continuously

between these limits.

Our aim here is to measure the velocity of the

domain wall as it moves towards equilibrium, and in

particular to ascertain whether different points in the

wall have different velocities. Therefore we need to

identify numerically the position of the domain wall, or

equivalently that of the disclination ring at its mid-

point, as a function of time. In a real liquid crystal

device different domains can be distinguished by

exploiting the optical properties of the liquid crystal.

In a simulation one way of distinguishing the two

domains is by plotting the order parameter or the free

energy density. For example, in figure 2 the largest

eigenvalue of the tensor order parameter Q (which

corresponds to the order parameter of the nematic

liquid crystal assuming uniaxiality) is plotted over the

(x, y) plane which contains the defect ring z~Lz/2. The

difference in its magnitude between the two domains (a)

and (b) is not large. But at the defect ring it has a much

smaller value.

In the simulations it proved most convenient to

pinpoint the exact position of the defect ring by

calculating the quantity [13]

Dijkl~
1

2
1{sgn ni:nj

� �
nj:nk
� �

nk:nlð Þ nl :nið Þ
� �	 


: ð14Þ

If Dijkl~1, a disclination line pierces the lattice square

with directors ni, nj, nk, and nl at its corners.

Unless otherwise stated simulation parameters were

A0~1.0, L1~0.04396, L2~0.04447, L3~0.06064,

C~0.625, j~0.59, r~2.0, P0~1.0, c~3, q~0.5,

ea~41.4 and em~9.8. Simulation and physical para-

meters were related as usual by choosing a length scale

L0 a time scale T0 and a pressure scale P0. A simulation

Figure 1. Schematic representation of the geometry used in
the simulations. The inner cylindrical domain (a) has a V
(bend) configuration and the outer domain (b) has an H
(splay) configuration. At the middle of the domain wall
(z~Lz/2), an s~+ 1

2
disclination loop is created (thick

line), given a boundary condition of symmetrically tilted
directors. T1, T2 are the points on the twist wall and
SB1, SB2 lie on the splay–bend wall.

Figure 2. The largest eigenvalue of the tensor order para-
meter Q is plotted over the (x, y) plane (z~Lz/2) which
contains the defect ring. At the defect ring the eigenvalue
has a much smaller value than in either of the two
domains (a) or (b).
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parameter with dimensions L½ �n1 T½ �n2 P½ �n3 , is multiplied

by Ln1
0 T

n2
0 Pn3

0 to give the physical value. L0~

6.2561028m, T0~1026 s and P0~105Nm22 were

chosen to give atmospheric pressure, elastic constants

similar to those found for the common cyanobiphenyls

such as 5CB or their mixtures such as E7, and

physically realistic viscosities.

The mapping gives values for the Frank elastic

constants of Ksplay~11.0 pN, Ktwist~6.63 pN, Kbend~

16.9 pN [9]. The lattice size was Lx~150, Ly~150 and

Lz~10. This corresponds to a cell of thickness y0.6 mm

and lateral dimensions y10 mm. This thickness is

similar to that used in the experiments, but the

experimental domains had radii ymm. These lengths

are not accessible with current computers and we were

therefore only able to model domain growth at an

earlier stage when the domain is smaller. The velocity

(which showed a weak dependence on the radius of the

cylindrical domain for radii =10 lattice sites) was

measured when the radius was 70 lattice sites.

4. Results

Figure 3 shows how the size and shape of the

disclination loop change as a function of time. In

these simulations, there was no external field and the

surface tilts were (a) 20‡ and (b) 40‡. The initial circular
shape of the domain is lost showing that the speed

differs at different points around the disclination loop.

When the surface tilt angle is 20‡, figure 3 (a), the

disclination ring shrinks at each point as time passes

because the surface tilt favours an H domain. But when

the angle is 40‡, figure 3 (b), the speed of movement is

slower and the point SB1 moves to the outside of the

original circle, showing that the domain expands in this

direction. This effect is discussed in more detail below.

4.1. Backflow

First, in order to isolate the effect of backflow

without the complication of distortion, we restrict

ourselves to one elastic constant L1~0.1, L2~L3~0.

(This corresponds to the three Frank elastic constants

being equal, Ksplay~Ktwist~Kbend~19.6 pN.) The other

simulation parameters are those given in § 3. Figure 4 (a)

displays results with no backflow (i.e. we solve

equation (7) with the constraint u~0). As expected,

the wall velocity decreases with increasing surface tilt as

the free energy advantage of the splay configuration is

reduced. When the tilt angle is 45‡ the splay and bend

configurations have equal free energies so the speed of

the disclination loop approaches zero. (The line tension

associated with the loop will tend to shrink it, but this

is a small effect for a loop of this size.)

Without backflow, all points on the disclination loop

have exactly the same speed at each surface tilt so a

domain that is initially circular will maintain its shape.

However when backflow is included the different points

on the domain boundary move with different speeds,

as shown in figure 4 (b). All the defects are accelerated,

the z1/2 defect at SB1 most, the 21/2 defect at SB2

only slightly. This agrees with results obtained in two

dimensions [3]. The two twist defects (T1, T2) still have

exactly the same speed.
The effect of backflow in the vicinity of the defects

can be explained by considering the velocity fields

shown in figures 5 and 6. These are for the splay–

bend walls (a cross-section through SB1 and SB2), and

the twist walls (a cross-section through T1 and T2),

respectively.

In figure 5 (a) the defect point on the left hand side

has topological strength of z 1
2
and corresponds to SB1

in figure 1. The velocity vortices in figure 5 (b) corres-

ponding to this point are considerably stronger than

those formed around the { 1
2
defect (SB2) and hence

are more efficient in increasing its velocity. In figure 6,

at the two twist defects, the velocity vortices have

the same magnitude and opposite directions so the

influence of flow on speed is exactly the same for the

two points.

4.2. Elastic constants

We now return to consider elastic constants appro-

priate to the liquid crystal E7. In figure 7 we plot the

speed at points SB1, SB2, T1 and T2 on the disclination

loop as a function of the surface tilt both with and

without backflow. Again the speed of movement

decreases as expected as the surface tilt increases

because the free energy density difference between the

H and V states decreases. Note, however, that even

without backflow, points at different positions on the

Figure 3. Change in the size and shape of a defect loop as a
function of time for no external field and surface tilts (a)
20‡ and (b) 40‡. The initial circular shape of the loop is
lost because the speed differs at different points around
the disclination loop.
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Figure 4. Velocity of four points (see notation of figure 1) on the disclination loop as a function of surface tilt (a) without backflow and
(b) with backflow. The results are for L1~0.1, L2~L3~0 corresponding to three equal Frank elastic constants.

Figure 5. Cross sections of (a) the director field and (b) the
velocity field for the splay–bend walls (x~Lx/2).

Figure 6. Cross sections of (a) the director field and (b) the
velocity field for the twist walls (y~Ly/2).
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disclination ring have different speeds. Indeed, for these

elastic constants, the velocity anisotropy depends more

strongly on elastic effects than on back flow.

It is interesting to note that for the z 1
2
defect (SB1)

point, the direction of movement changes when the tilt

angle is 30‡. Hence the motion of the domain acquires a

translational component as shown in figure 3 (b).

4.3. Electric field

Liquid crystal devices are operated by switching to

a state with the desired optical properties on applying

an electric field. As the electric field is applied, the

free energy density of each state alters so that the

equilibrium between the two domains is changed.

When the surface tilt is less than a critical angle

(which varies with the elastic constants) and there is no

external field, a splay director configuration is more

stable than a bend configuration. On applying a field,

directors prefer to align with the field so that the bend

configuration can become more stable than the splay

configuration. Thus we expect that the rate of growth

(or contraction) of the disclination loop will depend on

the value of an applied field.

To investigate this effect we set the surface tilt to an

angle of 11.5‡ and plot in figure 8 the velocity of points

SB1, SB2, T1 and T2 as a function of the voltage across

the liquid crystal. The contraction of the disclination

loop driven by the surface tilt slows as the field is

increased and for Vy1V the effect of the field

dominates and the central bend domain expands.

When the applied voltage is less than 1V, the

domain contracts fastest at SB2 { 1
2

� �
. However when

voltage is greater than 1V, it expands fastest at

SB1 z 1
2

� �
. Except near the transition voltage (y1V),

Figure 7. Velocity of four points (see notation of figure 1) on the disclination loop as a function of surface tilt (a) without backflow and
(b) with backflow. Simulation parameters correspond to E7.

1460 J. Jung et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



the two twist walls and remaining splay–bend wall

move with similar speeds, as found in experiments [2].

Our simulations show higher speeds by a factor y10

than the experiments. This is expected because of the

different dimensions of the computational and experi-

mental domains. In particular the disclination speed

increases as the sample thickness decreases. For

example, the speed of movement when the simulation

width Lz~20 is y30% of that for Lz~10.

5. Conclusions

This paper has presented a study of domain growth

in nematic liquid crystals. The hydrodynamic equations

were solved by using a lattice Boltzmann algorithm.

Because we aimed to investigate the dynamics of a

s~+ 1
2
disclination loop created on the domain wall, we

chose to use the Beris–Edwards equations of motion for

a tensor order parameter which allow for variations in

the magnitude of the order parameter.

We found that an initially cylindrical V domain in an

H state grows (or shrinks) anisotropically in agreement

with experiment. We argued that this occurs because

a preferred rubbing direction on the plates leads to

different director configurations at different points on

the boundary of the domain. Within the single elastic

constant approximation, the anisotropy is solely due

to backflow. However, for different elastic constants,

relaxational dynamics also contributes and the domain

grows anisotropically even if backflow is not taken into

account. Indeed, for E7, this is the dominant effect.

Figure 8. Velocity of four points (see notation of figure 1) on the disclination loop as a function of an applied voltage. Simulation
parameters correspond to E7.

Anisotropic domain growth 1461

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Results were also presented showing that surface tilt

and an applied electric field affect the speed at which

the domain changes size because they affect the relative

free energies of the H and V states.

Further work will be aimed at investigating the behav-

iour of defect loops in nematic liquid crystals whose

motion is not driven by boundaries. It will also be of

interest to compare simulation results with recent experi-

ments on the dynamics of parallel disclination lines [14].

We thank E. J. Acosta, S. Elston, N. Mottram and

G. Toth for helpful discussions. This work was

supported by the Agency for Defence Development in

Korea and the National Science Foundation under

Grant No. 0 083 286.
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